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Let G be a Jordan domain with a boundary curve of bounded rotation; We
consider approximation of complex-valued functions on G and ask for best
approximation by certain matrix-means of Faber polynomials and determine the
order of saturation concerning this approximation type. © 1999 Academic Press

1. INTRODUCTION

D:={zeC: |z| <1} stands for the open unit disk in the complex plane

C and H(D) for the class of all holomorphic functions D — C. By D we
denote the closed unit disk and define C(D) as the set of functions con-
tinuous on D as well as A(D):= C(D)~ H(D). The rth derivative of a

function fe H(D) we write as D'f. For ae ]0, 1[ we define
D'HX(D):={feA(D): (D'f)(z;) —(D’f)(z)

<const-|z; —z,|*for all z;, z, e D}.
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By way of introduction we consider a non constant function f* e D°H*(D).
In 1911, D. Jackson proved

_ 1
B/ D)= inf max (/%)= p =0 (5] (1= c0)

pell, zeD

(I1,, stands for the set of complex polynomials of degree not larger than n).
This means n~°>~* is the quality of approximation of f* on D by polyno-
mials of degree less or equal n. Our function f* has a Taylor expansion

—odu(f*, D)z which is uniformly convergent on D. The Rogosinski
means are defined as

URs(f*, D, 2) rzmi_o s 0) <°°s e 1>> -

A result from 1951, independently given by S. B. Stechkin and A. F. Timan,
states (cf. [9, 5.11.7 (8)])

max |4(2) ~ URH/%. 0.2 =0 () (n o)

zeD

This is best possible as we see from a general theorem of M. Zamansky. He
proved that if fe A(D) and

_ |
max /() — URHA D) =0 (2] (0 o)
neD

then f'=const. Thus, the order of saturation with resp. to the Rogosinski
means is 772 We go back to the special case of *. Information about the
quality of approximation between the order of saturation and the order of best
approximation, we find in a result of A. K. Pokalo (1957) [6, pp. 751, 753]

[Hz) = USs(f*, D, 2)

_ (DY *)(2) + 22D *)(2)

8 (n+1)?

_ (D'f*)(2) +72*(D*f*)(2) + 62°(D*f*)(z) + z4(D* *)(2)
384 (n+1)*

+ o

+0<nsl> (n—> 0,zeD). (1.1)
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The family of Faber series is the natural generalization of the family of
Taylor series when the unit disk is replaced by an arbitrary simply connec-
ted domain, bounded by a “nice” curve. In this paper we will treat the
above question for such a generalized situation. Our main result
(Section 6) gives several corollaries including the results cited above.

2. BASIC DEFINITIONS AND RESULTS

We consider a Jordan domain G with rectifiable boundary curve. By
A(G) we denote the class of functions that are holomorphic in G and con-
tinuous on the closure G. Let I7, be the set of all complex polynomials of
degree 0<k<n The best polynomial approximation of feA(G) is
associated with

E,(f,G):= inf max |f(z)— p(z)|.
pell, zeG
Walsh [ 10, p.431] proved E,(f, G)=o0(1) for every f e A(G).
Now let z=y(w) be the conformal mapping of C\D onto C\G
normalized by

0< tim Y

w—>o W

<+

The inverse function we denote by w =1/ ~!(z). The boundary curve y of G
has a tangent almost everywhere because y has length L < + oo. Then y is
called of bounded rotation if the angle of " can be extended to a function
of bounded variation on the whole curve (cf. [7, p. 63]).

Let T :=R/2nZ also viewed as T=0D <= C. For 0 <a <1 we define the
class H*(T) of all functions 4: T — C that fulfill

|(x1) — h(x,)| <const - |x; —x,|* (x1,x,€T).

Using Pommerenke’s results Suetin proved [ 8, p.229]: Let G be a Jordan
domain with rectifiable boundary curve of bounded rotation. For f € A(G) let
D’f denote the rth derivative of f. Assume that

Dfoy | {|w] =1} e HX(T)

for some 0<a<l. Then E,(f,G)=0(1/n"**) for n— oo. For meNu
{0} =: N, we have a Laurent series
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The polynomial part of this series is called the Faber polynomial p,,(G, z)
of G (note that p,, has degree m). For fe A(G) we define the Faber
coefficients of f as

=— j" (G, e™)) e~ ™ dt (meNy) (2.0.1)
as well as the partial sums
sl £, G, 2) Z wfs G) (G, 2)  (neN,) (20.2)

of the Faber series of f on G.

TaeoOREM | (Ko6vari and Pommerenke [ 5, p. 199; 8, p. 235]). Let G be
a Jordan domain with rectifiable boundary curve of bounded rotation and
fe A(G). Then

max | f(z) = s,(f, G, 2)| < (ky In(n +2) + ky) - E,(f. G),

zeG

where k,, k, are constants depending only on G.

Concerning the Fejér means

1 n
ol $,G.2) Tntl g Sl
= 3 alf G)(l—nfl>pm(6,z> (1< o)
m=0

we have the following

THEOREM 2 (Gaier [4, p. 54]). Let G, f as in the preceding theorem and
moreover foiy | {|w| =1} € H* with some 0 <a < 1. Then

EAf ) <max ()~ 0,(£. G2 =0 () (n= o)
zeG

In the case « = 1 we have, for technical reasons, to consider the Riesz means

R(f, G, z) Z amfG)< <nm>2> oG 2)  (neNg)  (21)
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and here we have the result

THEOREM 3 (Gaier [4, p. 54]). Let G, f as in the preceding theorem and
moreover foif | {|w| =1} € H* with some 0 <a<1. Then

E(f, G)<max | /() — R2(f. G.2)| = O <1> (n— ).

zeG n

3. ORDER OF SATURATION

We consider the infinite matrix

Mo MY Hom
Mo Fom
= (py,) =
Mo MY Mo
and the y-means
Us(f, G, z) Z ) 1y p (G, 2) (neNy).

THEOREM 4. Let G <=C a Jordan domain with rectifiable boundary and
f € A(G) a non-constant function. A matrix u as above is given with pu # 1
forallneN, m=1, .., n. Then

max |f(z)— U“(f, G, z)|7£0( min |1 —u%]) as n— oo.

1<v<n

Before giving the proof we will discuss the assertion of the theorem by
two examples:

ExaMPLE A. First we consider the Fejér means.

We take w7 :=max{0,1—m/(n+1)} for n,meN,. Here we have
min; <, <, [1 —p,|=1/(n+1). Thus the Fejer-means approximate the
function f on G not better than min; ., <, |1 —u2|=1/(n+1).

ExampPLE B. Next we consider the M. Riesz means.

These appear for 2 :=max{0, 1 —(m/(n+1))?} where n,me N, and ¢
is some fixed number in ]0, co[. In this case the theorem gives
min, ., <, |1 —p2 | =(1/(n+1))? with similar consequence as above.
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This leads to the following

DeFiNiTION 1. Let G, u as in Theorem4 and e=¢(n): N— ]0, oof
some function which tends monotonically to 0 for n— oo. Then &(n) is
called order of saturation for the p-means U%4(f, G,z) of the Faber-

expansion of f'e A(G) if

(1) max,.g|f(z)— UA(f, G, z)| = o(&(n)) implies f = const on G, and
(2) there exists some non-constant g€ A(G) such that

max,.g |g(Z) - Uﬁ(ga G_s Z)| = 0(‘(’(’1))
for n — oo is fulfilled.

Remarks. (1) For the Fejér means (Example A), ¢(n)=1/n gives the
order of saturation.

(2) For the M. Riesz means (Example B), ¢(n) = 1/n? gives the order
of saturation.

(3) For the Rogosinski means, &(n) = 1/n? gives the order of saturation
because (n— o)
m*n?

2(n+1) 8 n

1
1 —p,,=1—cos —.

Proof of Theorem 4. Since, by [5, p. 198]

L[ G, zﬁ(G,r))dT:{l if m=n
|

27i m+1 0 if m#n

L (m. neNo)
7| =1

it follows from the definition of Faber coefficients and the p-means,

(I =) an(fs G) =7~ |

7|=1 T

~ 1 f JW(G, 7)) - U/, G, lﬁ(C‘_?,f))dT
!

(n=meNy)

and therefore
|1 —up | la,(f, G)| < max |f(z) = U(f. G, 2).
We assume the conclusion of Theorem 4 to be false. Thus

max | f(z) = Us(f, G, 2)| "= o( min |1 —p7])

zeG 1<v<n
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and we obtain

1=l la(fs G) " =" 0o min |1 —u7])

1<v<n

and therefore

11— sy [ 1an(fs G) s o
nﬁn1<v<n|147ﬂ:|

o(1)

which gives
an(f, G)=0  (m=1)

and a theorem of Gaier [4, p.44] now shows f(z) =a,(f, G) for all ze G.
This contradicts the assertion.

4. FABER DERIVATIVE IN THE UNIT DISK

By C(T) we denote the class of 2z-periodic continuous functions
g:R— C and denote for such functions and 0 <dJ < oo, the modulus of
continuity by w(g, T, 9).

Now we consider some f'e A(D). Let g(x) :=f(exp(ix)). Then ge C(T),
and
| @& 1.9) 45 - o
0 0

implies [ 11, Theorem 6.8 ]

18

a,(f, D) e™ (xeR).
0

g(x)=

m

Similarly we get for the rth-order derivative D,

j” o(D'g, T, 5)d5<oo

0 0

= D'g(x)= (im)"a,,(f, D) e™ (xeR,r=1)

1

T8

and in both cases the trigonometric series converges uniformly. This
observation leads to the



164 BRUJ AND SCHMIEDER

DEFINITION 2. For fe A(D) and re N we define the Faber derivative of
rth order as

(Ff)(z) = im)" a,(f,D)z"  (zeD).

3
118

Moreover let F%f = D% =f7.

The proof of the following equations is left to the reader:

(D)) = (FF))

(D*f)(z2) =— (F*f)(z) — L ( 1)z),

()
(D7xn=.lgF7xn— 3AH )+ 2 L)

iz) (lz ) z iz
(DTXﬂ=(1AF7Xﬂ—1+2+ =D L)

iz) (iz)

LR E KR (e et VL PP
(lz) z
T B (@)

So, for fe H(D), ze D we obtain
(F'f)(z)=i((zD) f)(z) :=iz(Df )(z)
(F2f)(2) =i(z(Df )(z) + zX(D*f)(2))
(F3f)(z) =i*(z(Df )(z2) + 322(D%)(2) + 2X(Df )(2))
(FY)(z)=i*z(Df )(2) + T22(D%)(2) + 623 (D )(z2) + 24D )(2))

(F'f)(z)=i"((zD)" f)(z)=i"(zD(zD)" " f)(z) :=i"(zD(zD)"~" f)(z).
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5. FABER DERIVATIVE IN A JORDAN DOMAIN

Let fe A(D), reN U { } and ¢ := F'f. It follows from Definition 2 that
W fs D) =a,, D/ " for all me N and so we have

fO=aff D)+ Y @D

m=1 lm)’

and the power series converges uniformly on D. Now we obtain for z e D:

E a,lp, D),
mgl
_ 1 T 3 1 vt < D m , —imt d
= L2 are) (£ mtm D a
v#0
1 r < 1 ivt 1 r < im(o—t
“on L(_Z_w (v > <2n LAE/W“”’D” ( )>

_i " .- 1 vt L " io, —it ( “7)>
C2n J,n <V_Z_OO (iv)’e >.<2m’ J,,,(o(e ¢ )e —z
v#0
1 = & 1., 1 p(te™") >
- e ) [ ——~drt | d.
2n Jn(v}_:oo vy € > <27U' J|r|=1 —z
v#0
Thus we have the expansion (¢ =F'f,ze D)
, 1 it
f(z)=alf, D)+—j < e)(j We)dr)dt.
270 Y1 T—zZ

This leads to our next definition (cf. [ 11, Vol. 1, p. 42]):

DEerFINITION 3. Let G be a domain in C which boundary 0G can be
represented as a rectifiable Jordan curve, fe A(G) and reN. By ¢ we
denote a function in A(G) with [*_ o(¥(G, ")) dt =
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Then we call ¢ the rth Faber derivative F’f of f if it satisfies

1 P oo eivt
fo=aif 6y [ (3 55)

y=—

v#0
(o PG,y GO e™) L)a cco
27i Ja6 (—z

We mention the following Convolution Theorem of Dzjadyk [ 3, p. 372]:

THEOREM 5. With notations as in Definition 3, if ¢ = F'f then

(=)= agl 1, G) + f ¢’)G)pm<6,z) (eG), (+)

where the series is pointwise convergent.
Now we give conditions which are sufficient for uniform convergence on

G of this series.

THEOREM 6. Let G, f, r, ¢ as in Definition 3. Additionally we assume
that the boundary curve 0G is of bounded rotation and that the function
o(Y(e™)) belongs to HXT) for all 0 << 1. Moreover let ¢ = F'f. Then

(1) let
& a9, G)p,G,z)
m=Zn:+l mj
_(ﬂ(Z)—Sn((ﬂ, C_;a Z)+< 1 _ 1 >
- (n+1)/ (n+1) (n+2)
1)2 _
L ()~ Rl G, 2)

e 1 1 1
m:Zn:+1 <<le(m+ 1)1> 2m+1

1 1 1
<(m+ 1)f(m+2)f> 2m+3>
x(m+1)*(p(z) — R, (9, G, 2)) (5.1)




BEST APPROXIMATION AND SATURATION 167

for all n, jeN,, ze G and the series on the left side as well as this on the
right side converges uniformly on G,

(2) let

m%Lﬂﬂ—mJﬁGJH";w0<T£J~ (52)

zeG n

As an immediate consequence from Dzjadek’s Theorem 5 and Theorem 6
we see that (x) holds uniformly in G.
We prove Theorem 6 in Section 8.

6. THE MAIN RESULT

DEerFINITION 4. For reN and ae 0, 1] we define the class F"H*(G) as
the set of all functions f'€ A(G) with a Faber derivative ¢ = F'f of rth order
such that @oy(e”) belongs to H*T).

In this section we consider matrices of the special form

1 2 0 0 0 -~ 0 0 0
1 ud @b 0 0 -« 0 0 0
" 1ow?2 W2 w2 0 - 0 0 0
= (uy,) = R _
| A A AR [ (R

Moreover we assume that for ne Ny and 0 <m <n+ 1 we have an expansion

o0 m \4
=1 b 6.1
H +v§1 v(n)<n+1>, (6.1)
where the coefficients b ,(n) fulfill the condition
A(n):=1+ ) v|b,(n)| < (neNy). (6.2)
v=1

Remark. 1t was discovered by A. K. Pokalo (cf. [3, p.318]) that the
means in the sense of Fejér, Rogosinski and others fulfill the joint
conditions (6.1) and (6.2).

By (%) we obtain for the u-means (as defined in (3)) when fe F"H%G)
the equation

U S G2 =af, G+ § 2O

(im)’ mpm((_;, z) (zeC). (6.3)
m=1 im)
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Now we are ready for our main result which quantifies the approximation
of a function by the y-means:

THEOREM 7. Let G be a Jordan domain with rectifiable boundary curve
of bounded rotation, reN, o€ 10, 1] and f € FTH*(G). Let the matrix u be
given as above (see (6.1), (6.2)). Then we have, for all ne N, and z€ G,

f(2) —U"f,@z
= Z

) ¢(Z)_Sn(§0> G_s Z)

(Ff)(2) + 15 41

T n+1)) (i(n+ 1))
0<|b't1+(f > if «e]0,1[
<|br+1r+l|1nn> ;e
+0</1 )> (n— o). (6.4)

Remarks. (1) The condition (6.2) obviously implies the absolute
convergence of the series in (6.1).

(2) Theorem 7 also contains full information about the order of
saturation in the situation under view. Here we omit a detailed formulation.

We mention some special cases:

(1) For the partial sums U“(f, G, z) =s,(f, G, z) we obtain for ze G

~ _(P(Z)_Sn((ﬂv G) Z) 1 N
12 =5, Gz = P +o<n,+a> (n— o0).

(2) For the Fejér means U“(f, G, z) =0,(f, G, z) we have for ze G

=~ _(F)) 1
G,z i(n+1)+0<n’+°‘> (n— ).

(3) For the Riesz means UX(f, G, z) = Ri(f, G, z) we have to discuss
four cases (z€ G):

(3.1) g¢g<r. Then

e ) ! .
f2)—R(f, G’Z)_(i(n+1))q+0<n’+°‘> (n— o0).
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(3.2) g=r. Then

G ) ! R
6= R £.6.5) =P A0 () o)

(33.1) g=r+1and ae 0, I[. Then

1

f(z) = R.YYf, G, z)=0<nr+a> (n— ).

(3.3.2) g=r+1 and o= 1. Then

fz2)=R*Yf G, 2)=0 <:1+”1> (n— o).

(3.4) g>r+1. Then

S~ RIS G2 =0 (z)  (ns o)

= UR°e(f, G, z) we obtain

(4) For the Rogosinski means UX(f, G, z)

):

(4.1) In the case of even r =2},

won SN DE @\ (R (1) [z
f2)=U, (f,G,Z)——kgl (2k)! <> (in+1))%* 7! <2>

®(z) 1
in+ Dy ¢ <n> (=)

Ql

(4.2) In the case of odd r=2j+1,

. Rog / 1) 2* (FZkf)(Z)
JE) = U/ G, 2)= —kzl <2> (i(n+1))%*
1
e if 0<a<l,
<n > (6.5)

+ Inn

We mention that in the case r =5 and 0 <a <1 we obtain (1.1) from (6.5).
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7. TECHNICAL PREPARATIONS

In this section we cons_ider some Jordan domain G with rectifiable
boundary and some f' € A(G).

LemMa 1. Letn, jeNy, N=n+1, and ze G. Then

N

an(f, G) Pl G, 2)
m:zn:+1 mj
:f(z)—sn(ﬂG,z)+< L >(n+1)2
(n+1) (n+1) (n+2)/) 2n+3

L N—2 1 1 1
x(f2) = RS G 2) = X Kmf(m 1)f> 2m+1

m=n+1

1 1 1 ~
_<<m+ 1)j_(m+2)f> 2m+3} (m+ 1 (f(z)— R3(f, G, 2)

_f<z)—sN<f,G,z)_< ! _1>
N7 (N—1)/ N/

N? R2(1.G 71
x5 (/(2) = RA(£. G, 2)) (7.1)

Proof. The definition of the partial sums s,, gives (s_, :=0)

an(f, G) PG, 2) =5,(f, G 2) =5, _1(f. G 2)  (meNy)  (72)

and we see
% a4l f; G) pulG, 2)
m=n+1 I’)/l]
_ g: Sm—Sm—1
m=n+1 mj
N N—1

m=n+1 mj_m:n (m+ 1)]

S, AL | 1 S
it X <mj_(m+ 1)f> Sm TN

m=n+1
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Using the definition (2.1) of the Riesz means RZ(f, G, z) we can transform
this into (with R? | :=0)

(m+1)7?* . m*
= R: — R No). 73
Sm 2m+1 m 2m+1 m—1 (me 0) ( )

Similar as above this leads to the equation

o dw(f, G) pu(G, 2)
> L7

m=n+1

s, < 1 1 >(n+1)2 R
T (m+1)Y \(n+1)Y (n+2)) 2n+3 "

N=2 1 1 1
+ o2 anf(mﬂ)f)zmﬂ

m=n+1

1 I ! L,
_<(m+l)f_(m+2)j>2m+3} (m+1)°R,,

Sy 1 1 N
— P R . .4
+Nf+<(N—l)f Nf>2N—l N (74)

Now we consider the case f=1 on G. Then ay(1, G)=1, a,(l, G)=0 for
meN and therefore s5,(1,G)=R1,G)=1 for all neN,. By (74) we
obtain

0= 1! _< 1 >(n+1)2
T+l \(n+1)7 (n+2)7) 2n+3
N—-2 1 1 1
+m_zn+1[<nﬂ_<m+1)f>zm+1
1 1 1
_<(m+1)j_(m+2)j>2m+3}(m+1)2

1 1 1\ N2
——t e e T P 7.5
+Nf+<(N—l)/ Nf> IN—1 (7:5)

Now (7.5) and (7.4) gives the desired equation (7.1).
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LEMMA 2. Let neN,, jeN, and ze G. Then

Z mjam(.f; G) pm(éa Z)
m=0
n/—(n—-1)

1 n*(f(z) = R;_\(£. G, 2))

= —n/(f(z) =5,/ G z))+

_"iz <(m+2)f—(m+1)f (m+1)f—mf>
= 2m+3 2m+ 1
x(m+1)? (f(z) = R,(f. G, 2)). (7.6)

Proof. Lemma 2 can be proved with similar arguments as Lemma 1.
Here we have to use (7.2) in the first Abel transform and (7.3) in the
second.

8. PROOF OF THEOREM 6

We give the proof of Theorem 6 in three steps.

Step 1. To prove (5.1) we discuss the terms in equality (7.1)
(Lemma 1) for N — co. From the obvious inequality

1 1 m .
—_— = — j _j_ld
ml (m+ 1) ]LH—IX X
(" 1 J .
<_]L,+1 dezm (J,meN)
we obtain
1 1 ¥l .
1| S (je{—1} UNy, meN). (8.1)

Similarly we derive

1 1 1 1 1 1
<mf(m+1)f>2m+1<(m+1)f'(m+2)">2m+3

dx  (jeN). (8.2)

m+1 (x+1)_j_x—j
p—_7 -
L, 2x+1
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A simple calculation gives
(x+1)7—=x"
2x+1

(== AD) T =x ) = x(xe+ D(x+ 1) /2 —x T2 (83)
B (2x +1)? '

and it easily follows that, for je Z\{ —2, —1,0} (using (8.1))

(x+1)7—x"7 j(j+2)

0<D - )
< 2x+1 x/+3

Therefore we get by (8.2) the inequality

1 1 1 1 1 1
0<<mf_(m+1)f> 2m+1_<(m+l)j_(m+2)j>2m+3

(it0
J(n{lj;a) (JeN).

This, in combination with Theorem 5, shows

NZ_Z Knif_(mi 1)f> 2m1—|— 1 <(m—l+ 1)"_(mi2)’> 2ml+3}

max
ze@G m=n+1
< (m+ 1) (=) — R2(. G, z))]
N—2 -
J(j+2) 1

oy N=2  dx
=j+n0m | S

1 1
=(j+2)0(1) <nf'+°<_(N—2)f'+“>' (84)
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Note that the O-symbols are independent of N. So, for N — oo, we obtain
an universal upper bound for the sum

Y [ Mm+1)*(p(z2) = Ri(9. G, 2))

in (7.1) by

m

& 1 1 1 _
miy S| (G i) a0 60— R 6o

:(”2)'0(;11‘1”) (n— o). (8.5)

Step 2. Next we consider the last terms

pE) (9. Gox) (1 1\ N2 o
B N/ _<(N—1)]_Nf>2N—l(¢(Z)_RN(¢’ G, Z))

of Eq. (7.1). By (8.1) and Theorem 5 we have

max
zeG

1 1 N2 2 ~ Nioo 1
<(1V—1)j_1\”>2N—1((p(z)_RN((p’G’Z))‘ = 0<A/j+a>‘

By Theorem 3 and Theorem 2 we obtain

(p(Z) _SN(§03 Gr Z)
N/

Thus from (7.1) we see (5.1) when N tends to oo.
Step 3. Now we prove (5.2). We have
& aue, G) pu(G,2)

m=n+1

max | f(z) —s,(f, G, z)| = max

zeG zeG

Similar arguments as above, using (5.1), (8.1), (8.5), and Theorem 2.3,
and 5, lead to (5.2).
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9. PROOF OF THEOREM 7

From (6.3) we see for ze G

UNLG s = a6+ s Wl

Remark in Section 6 = - Clm(gﬂ, G)
= a6+ Y ;

v 1(n+1)v 1 lm)
@ & aue,G)
) f(z)—m;n+1 Gy PG> 2)
S N X )
+v§1 (l(n-i-l))" <mz=:1 (lm) —v pm(Gs Z)

Def. 3,Thm. 5 o by(n) v
2@+ S iy e

v=
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Therefore, using the uniform convergence of the series, we get

10~ VAL G2 = = T o

r—1 bv o] m , .
sy M Y @ 6

v=0

n
N (7) R (O N €) B
—1 Z (n+1)V mgl mr—v pm(G’ Z)~ (91)

Now we discuss the three sums of the right side step by step.
Step 1. From Lemma 2 we obtain
2 b(n) & au(e,G)
— ) Zm\ > )

Z (n+1)v mzz:l m'

_ b o
= g 1y e G )~ o2

PG, 2)

v=r

. _

_ i_,(nrll()’le <—"(<p(2) — 5., G, 2))
n? =

+5. 7 (0(2) =R} (9. G.2))

n—2 (m+1)2
+2m§0 Qm+ )(2m+3)

(0(=)— R2(p. G, z)))

b 2 2 &

+(o(2) - Ky (0,62

_i_r i bV(n)V<_nv_r(¢(Z)_sn(¢9 G_7 Z))

v=r+3 (n+1)
nV7r_ n_l)V7r _
L n(p(z)— R2_ (9. G. 2))
2n—1
- Z <m+2)" ’ (m—}-l)v_’(m-i—l)"_’—m"_’)
2m+3 2m+1

< (m+ 1) (9(z) — R2(p, G, z)>>.
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St byn) e(z)—s,0, G, 2) b(n) B
l vgo (n+1)v (n—i—l)’—v _(l(n+1))rsn((pa G,Z)

© _
) (niﬁ"l))x—nv—'(@(z)—sn(go,G,z>>>
v=r+1
_9(2) = s, G z) & @(2) = 5,9, G, z)
— (in+1)) Z bl Gty o
b(n) o, _
“Un+ D)y p(z2)+i " (p(z) —s,(p, G, 2))
o0 (n+1)v—r_((n+1)v—r_nv—r)
- v=;+1 (n+1)" biln)
_ br(n) (Z)+ n (/)(Z)—Sn((p, C_;a Z)
G+ )y 7 T T G )y
(ﬂ(Z)—Sn((p, (_;7 Z) > n vor
R V_§+1<1‘<n+1> >”v‘”)'

Step 3. Now we begin the proof of (6.4). By (9.1) we obtain

J(2) = Ui 1. G.2)
IR X0 b,(n)
==X Gy -

(ﬂ(Z) _Sn((Pa Ga Z)
(i(n+1))
b, 1(n) "2 (m+1)°

Ay mz:O Gmt Dam 1 3) ()~ Rul. G.2))

_(ﬂ(Z)'—Sn(CD,?_aZ) i <1_< n >v_r>bv(n)

Gn+ny 2, U

+ i

< byn) 1 1
+ EO n+1) <(n n 1)r—v_(n+2)r—V>

(n+1)?
X
2n+3

(¢(2) = R(9. G, 2))

177
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RS N U ! 1 1
L ey, 2 [(x’_"_(x+l)’_">2x+l

v=0 m=n+1
x(m+1)*(p(z) = R(9, G, )

. eS) bv(l’l) nvfr_(n_l)vfr
> n+1)y  2n—1

i :|
m+1

n*(p(z) = R;_\(9, G, 2))

v=r+1
., 2 b(m) "I ((m+2) " —(m+1)"
i v=;+3 (n+l)v mz=0< 2m+3
(m_'_l)vfrimvfr B
- 1 >(M+1)2(¢(2)—R3,,(¢, G, 2)). (9.2)

Step 4. We discuss the cases depending on .

Case o€ ]0, 1[. Then we have

Case «o=1. Then

n—2 1

X

m=0

<jn @=lnn.

m+2 J x

Thus, using Theorem 5, we can estimate the term in Step 3 in both cases
by

_ beia(n) ”iz (m+1)?
(n+1)" Z, Cm+1)(2m+3)

m

b)) S 1
C(n+1)y ! ) 0<(m+2)“>

m=0

1 .
O<nr+u> if ae]O,1[

1
0<lf+”1> it a=1
n

Step 5. From Bernoulli’s inequality we see

n_\’ J J .
1— <1—(1- = N, neNy).
<n+1> ( n+l> n+1 (jeN, neN,)

max |2 (¢(z) = R3(9, G, 2))

zeG

= b, 1(n)]
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Now, using Theorems 3 and 2 we obtain

S, (- el

v=r+1

max
zeG

Inn 1 x
=0<nr+a> Y, lv—rllb(n)]

n+ 1 v=r+1
1 \In(n+2) & A(n)
=0 =i - _ ,
<nr+u> n+1 v=zr:+1 |V r| |bv(n)| 0<nr+<x>

Step 6. Inequality (8.1) and Theorem 5 show

'y bv(n)< L1 )
L )\ )y (nr2)

max
zeG .
X(n+1)2( (Z)—R2( C_;Z))‘
2n+3 4 A®, G,
_r_l b,(n 1 B 1 r—1
- % Grrp 0 () =0 () 2, b= o

) }
m+1

sl b 2 1 I |
! Zo(n+1)v ) {(x""(x+l)"v>2x+l
x<m+1>2(<p(z>—Ri<(p,G,z>>‘

1 r—1
- <n+> Y Iv=r=2|bn)l.

v=0
Step 8. The following inequality is easy to verify

X X m+1 . m+1 X
(m+1)ffmJ=jJ x"ldx<jj (m+1)""'dx

m m

—jm+1Y='  (jeN,meN,). (9.3)
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Thus from Theorem 5 we see

il b (n) n='—(n—1)"""

P —r 2 __RZ G
Izneag 1 v:;+1 (n+1)v 2’1—1 n ((ﬂ(Z) nfl((pn ,Z))
& b (v=r)nT <1>
- o—
V:Zr:+1(n+l)v m—1 O\
1 o0
~0() X b-rlinl
v=r+1

Step 9. On the analogy to our considerations in the first step of the
proof of Theorem 6 we have

(m+2)—m+1)7 (m+1) —m’

0< 2m+3 T am+d
2i(j—2)(m 42y ,
7 (2n)1(+1)2) (j=3). (9.4)

Now let v—r>3 and ae 0, 1] be given. Then

n—2 n
Z (m+2)v7r717<x<j xvfrflfzdeZ
0

m=0

V—Fr—o

n

V—r—a
m+1>
m

®  b(n) "ZF2(v—r)v—r—=2)m+2)" " "!

Thus by (9.4) and Theorem 5 we can estimate

o, © bv(n) n—2 (X-‘rl)v_r—xv_r
DY (n+1) Z( 2x+1

v=r+3 m=0

max
zeG

x(m+1)? (¢p(z) — R (9, G, 2))

:v:;H(n—i—l)” mzzo 2m+1)?
1
><(m+1)20<(m+2)a>
(v=r)v—r=2) |b,(n)| "?

z (m _l_z)v—r—l—oc

m=0

(n+1)"
(v—=r)(v=r=2) |b,(n)|
(v—r—a)n+1)”

—0 (nfM) S vl byl

v=r+3

V—Fr—o

From (9.2) and Steps 4 to 9 we see the assertion of Theorem 7.
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10. FINAL REMARKS

(1) The Zygmund class Z(T) is defined as the set of all continuous
functions g: T — C with the property

X+
‘g(X) —2g< 5 y> + g(y)‘ <const- [x — y| (x, yeT).

For reN let F"Z(G) denote the class of functions f € A(G) with a Faber
derivative F’f of rth order such that (F'f)oyocexp oie Z(T) (compare
Definition 4). For this class the result (6.4) of Theorem 7 holds in the form

\ - N () N
S(2) = U(£.G.2) = ; n+1)) (PN = o1y )
n ¢(Z)7Sn((p’G7>Z)
+:un+1 (l(n+1))r

o) o (45) e

(2) Equations of the form (1.1) were first studied in 1932 by
E. V. Voronovskaja in a paper about approximation by Bernstein polyno-
mials. Since then her results had been extended in several directions by many
authors. We only mention articles of S. N. Bernstein (1932), 1. P. Natanson
(1944), P.P.Korovkin (1953), R. Taberski (1958), 1. M. Petrov (1958),
R. G. Mamedov (1959), Y. Matsuoka (1960), P. L. Butzer and E. Gorlich
(1966). More details can be found in [2]. For recent results on these ques-
tions we refer the reader to the monography of V. K. Dzjadyk [3]. A very
recent paper is due to V. A. Baskakov [1].

(3) The case of domains with % *boundary (cf. [7, p.49]) was
treated by Bruj in 1974 (cf. [3, p. 383]). It is known that the class of these
domains is not contained in the class of all domains which boundary curve
is of bounded rotation nor vice versa.

(4) Finally we mention that the considerations in Section 3 above
presents new (and simpler) proofs for former results (cf. [2, 3]).
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